Monday, July 15, 2013

Sun's Coronal Temperature Maintained By Magnetic Waves - Space News - redOrbit

Sun's Coronal Temperature Maintained By Magnetic Waves - Space News - redOrbit 

Magnetic Waves Responsible For Keeping Sun’s Corona Heated

July 9, 2013
Lee Rannals for redOrbit.com – Your Universe Online
Astronomers at the 44th meeting of the Solar Physics Division (SPD) of the American Astronomical Society are shedding light on the Sun’s coronal heating mystery.
The team found evidence magnetic waves in a polar coronal hole contain enough energy to heat the corona and deposit most of their energy at sufficiently low heights for the heat to spread throughout the corona. Their observations help answer a 60-year-old solar physics mystery about the unexplained temperature of the Sun’s corona, which has been likened to a flame coming out of an ice cube.
Nuclear fusion in the center of the Sun heats our neighboring star’s solar core to 15 million degrees. If you move away from this area and arrive at the surface of the Sun the gas has cooled to about 6,000 degrees. However, the temperature of the gas in the corona, above the solar surface, soars back up to over 1 million degrees.
Drs. Michael Hahn and Daniel Wolf Savin, research scientists at Columbia University’s Astrophysics Laboratory in New York, used observations taken from the Extreme Ultraviolet Imaging Spectrometer on board the Japanese satellite Hinode. They used data based on a polar coronal hole, which is a region of the Sun where the magnetic field lines stretch from the solar surface into interplanetary space.
Scientists have come up with two dominant theories to explain the mystery behind coronal heating. One theory says the heating is due to the loops of the magnetic field, claiming as they stretch across the solar surface and snap, they release energy. The other theory says magnetic waves emanating from below the surface causes the heat. However, previous observations haven’t been able to pinpoint which theory to follow, until now.
The Columbia University team’s observations show magnetic waves are the answer. However, this determination opens up a realm of further questions, including what causes the waves to damp. The team plans to perform new observations in order to try to address this issue.
Scientists at the same meeting have pointed to magnetic fields as a way to predict where sunspots will emerge. A team from NorthWest Research Associates (NWRA) and the Max-Planck-Institut fur Sonnensystemforschung (MPS) used data from the Global Oscillations Network Group (GONG) and the Michelson Doppler Imager (MDI) to help predict sunspots at least a day in advance, which could ultimately help scientists better understand space weather.
“We’ve shown that careful research using the visible part of the Sun can indeed tell us about what is happening underneath; these results will be a guide for further research, and ultimately improve our understanding of the Sun and all stars,” said Senior Research Scientist Dr. K. D. Leka.

Speedy tsunami seen on Sun's surface


Two satellites have seen "tsunami" spreading on the surface of the Sun after a release of matter into space called a coronal mass ejection (CME).
These tsunami of heightened magnetic field and hot, ionised gas race across the Sun at about 400km per second.
Analysis of the chance sighting, to be published in Solar Physics, allowed the measurement of the magnetic field in "quiet" areas, away from the CME.
Understanding this field may help predict how CMEs will affect the Earth.
And thanks to data from Hinode, one of the two satellites, researchers may have cracked a 70-year-old mystery as to why the Sun's surrounding corona is so much hotter than its surface.
The Japanese satellite Hinode has been studying the Sun since 2006, joined in Earth orbit by the Solar Dynamics Observatory in 2010.
Both satellites look at ultraviolet light from the Sun - colours we cannot see but that give hints as to both the chemical makeup and the extreme physical conditions at and near the Sun's roiling, turbulent surface.
David Long of University College London and colleagues finally spotted what are known as EIT waves after a CME. Like a tsunami emanating from the point of a seismic event, EIT waves are shock waves that carry magnetic fields and hot, ionised "plasma".
"These EIT waves are quite tricky - they're very random and they're relatively rare," Dr Long told BBC News. "We need to be in the right place at the right time; this has been a long time coming."
The SDO satellite was able to capture the ultraviolet light emitted as the wave spread out. From that, the team was able to determine the wave's speed - some 400km per second - and its rough temperature, over a million degrees.
Meanwhile the Hinode satellite returned a high-resolution map of the density of the Sun's surface every 45 seconds.
Using both data sets, the team was able to determine the strength of the magnetic field in the "quiet corona" - a tricky measurement of the Sun in its typical, quiescent state.
"This tells us a lot about the nature of the Sun and what goes on in the atmosphere," Dr Long explained. "These waves are quite important because they're associated with CMEs that fire plasma out into the heliosphere, toward the Earth."
These CMEs can bathe the Earth with fast-moving particles that can disrupt satellite communications or even knock out electrical power here on Earth - but solar scientists struggle to predict their eventual effects.
"Generally we see them when there's a CME coming straight at us - but when it's coming straight at us then it's quite difficult to measure how fast it's coming at us or how strong it is," Dr Long said.
"So by looking at these waves, we should be able to infer how powerful these CMEs are going to be."
More observations of EIT waves will be needed to determine the exact relationship between the waves' and the CMEs' characteristics.
Hot, cold, hot
The Hinode satellite was also crucial for measurements reported at this week's meeting of the Solar Physics Division of the American Astronomical Society.
Michael Hahn and Daniel Wolf Savin of Columbia University in New York, US, used Hinode to peer at similar waves from a "polar coronal hole" - a region where, like the pole of a bar magnet, field lines originate and reach far above the Sun's surface.
They were trying to tackle a puzzle about the temperature of the Sun's surrounding corona.
The temperature at the Sun's core is some 15,000,000C, but its surface is below 6,000C. Yet the corona is known to be at a temperature in excess of 1,000,000C.
How the energy gets into the corona to keep up these temperatures has baffled astronomers for more than half a century.
One idea was that waves of magnetic energy rise from below the Sun's surface, depositing energy into the corona higher up. But what remained unclear was whether the energy was lost on its journey.
Hinode observations of the polar coronal hole have allowed the pair to peek into this interim height and determine how the energy is coupled up from the surface into the corona.
In a preprint on the Arxiv server they show that enough energy is carried by these waves to keep the corona at its searing temperatures.

No comments:

Post a Comment